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I ABSTRACT

This paper presents a novel polynomial-time algorithm for ompacting a VLSI
Layout. Compared to previous algorithms, the algorithm proaises to produce
higher quality output while reducing the need for designer intervention. The
performance gain is realized by converting wires into constraints on the
positions of the active devices. These constraints can be solved by graph-
theoretic techniques to yield optimal positions for chip components. A single-

-* layer router is then used to restore the wires to the layout, using as many jogs
as necessary.
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9 Compaction with Automatic Jog
Introduction
F. Miller Maley

Laboratory for Computer Science
Massachusetts Institute of Technology, Cambridge

Abstract--:This paper presents a novel polynomial-time algorithm for carn.
pacting a VLSI layout. Compared to previous algorithms, the algrthm
promises to produce higher quality output while reducing the need for de-
signer intervention. The performance gain is realized by converting Wires
into constraints on the positions of the active devices. These constraints can
be solved by praph-theoretic techniques t9 yield optimal positions for chip
components. A single-layer router is then used to restore the wires to the
layout, using as many Aos as necessary.

1. Introduction

-An automated compaction procedure is an effective tool for cutting produc-
tion cootsof aVLSI circuit at low cost tothe designer, because the yield o
fabricated chips is strongly dependent on the total circuit area." An effective
compaction system also reduces design time by freeing the
continual concern over design rules. If exces layout space can be removed .

automatically, the deiger can sketch a layout without making constant of-
forts to consere area. For these reasons, compaction algorithms have gained
widespread attention in the VLSI literature [4, 5, 9, 111, and have been in-
corporated into many recent computer-aided circuit design systems [2, 4, 10, O
17]. j For

Most compaction algorithms, including the one described here, coin-

press a layout in one dimension only. To reduce both dimensions, the layout TAB&I
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1985 Chapel H-ill Conference on VLSI 261 #9.etd-- *j

Availability Codes
Avail ai djor

A-1



n2 Compaction wfth Automatc Jog k4roduadon

can be alternately compacted in x and y until the algorithm can find no fur-
ther improvement. Compaction in two dimensions simultaneously is theoret-
kally difficult, although it seems to work well in practice [5]. The remainder
of this paper assume that the direction of compaction is horisontal.

1.1. Constraint-based compaction

The more recent systems [4,10] use a constrsant-bscd technique to
provide one-dimensional compaction. These procedures begin by assigning
to each layout component i a variable ti, which represents the c-coordinate of
that component's leftmost point. The deign rules of the fabrication proesm
are then used to derive constraints on the positions of the components. For
example, if device i lies to the left of device j, and such devices must remain
at least 2 units apart in order to function reliably, the compactor generates
a constraint zi - z, 2 2 + wi, where w, is the width of component i. (We
make the usual assumption that components are not allowed to jump ove-
one another.)

The design rules lead naturally to a set of constraints with very nice
properties. First of all, the constraints are not especially difficult to compute
[9]. Second, they are sufficient to guarantee that the compacted layout is
legal. Third, all constraints ae simple linear inequulitie: they have the
form zJ - Zi _> aq,"" "

where z, and za are two of the variables assigned to layout components, and
aoi is a constant.

Because of the simple form of the inequalities, they can be solved
efficiently by graph-theoretic techniques. One constructs an edge-weighted
graph whose vertices represent the variables z,, and in which an edge of
weight ai from node z; to node ej represents the constraint a - ? ? aij.
An assignment to the variables z, that satisfies all the constraints is then
determined by a longest-path computation on the graph. The resulting
values specify the optimal positions of the components in the compacted
layout. A good introduction to constraint-based compaction may be found
in [5]; common algorithms for computing longest paths are discussed in (8].

1.2. Automatic jog introduction

In order to perform ay sort of compaction, the components of the
layout must be differentiated into modules, which are fixed in size and shape,
and wire., which are flexible. Common procedures for generating design
rule constraints [4,5,9 asume that wires are simply rectangular regions of
variable length, and otherwise identical to modules. A vertical wire, for
example, would be assigned an i-coordinate during horizontal compaction,

-;.; -...................... "
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and could onl be moved rigidly fre side to sie. But one would often Mke
a previously straight wire to bend around a bstacle duuing compaction, ir
the ame of the circuit could thereby be reduced.-

This problem is noam *yovercome. 6my eystems R4, III attempt
to solve it by allowing the designer to specif jo points at whic virm
may bend. Compaction then becomes an interactive procedure in whic the

- designer repeatedly email.. the compacted Ilout, adds aw potential jag
points, and retries the compactiom operation. Other wstms 01J attempt to
insert jogs automatically, using ad het technique which weast gunaranteed
to be effective. One technique that will work is to insert all possible jog points
into every wire. The resulting algorithm has the theoretical drawiback that
it requires exponential time on some inputs; eve in practice, it is Ikal to
consume large amounts of time and memory.

The polynomial-time algorithm presented in this paper has the capa-
bility to introduce jog poitts automatically in an optimal fashion k cas thus
be expected to produce high quality output with lIttle designe itervention.
Automatic jog introduction is achieved by treating wires not a solid objects,
but only as indicators of the topology of the layout. Constraints between
modules so bunge epree desig rules directly; instead, they wE mer
that there oust paths for the wires, having the given topology, that sat-
isfy the deseg rules. The new constraints, called rouait conditions, cam
be formulated as simple how inequalities, and solved a usual. When the
optimal module placements have been established, the am wire pathe are

detrmne by a ingle-layer router presented in (6). This router geeaes
* no *unnecessary UWs, and therefore minmses wire lengths, given that the

layout topology is fied.

This approach to compaction depends ce hie ability to generate com-
plete ronubility condiion for a layout. Until recently, such conditions were
humn only for certain channel routing problem 17,16J. The present work is
made possible by the theory of planar routability developed in III and 1141. A

1.3. Orgasedot~n ofSA On r p*~~

The remainder of this paper is organised s follms .ectie)2 dta the
definitions and theoretical results that underlie the new compaction method.

-A this, extended ahiealp4 r nte~Sectoe3 shows how the
circuit layout is converte to a data Structure appropriaste for compaction,
and Section 4 details the body of the compaction algorithm. I mentionm*
Sectie*>&44al improvements to the algorithma hat should make It run
considerably faster. Secties 6 comments 0biAo li algorithm's correct-
ness proof. fineftl, 1 ezlw dSect"*7,Asome extensions of-p.
results, and a discussion of the practical value of *compaction algorithm.
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2. Sketches and planar routablilty

The puincipal data structure used by the compaction algorithm is caded a
sketeh. A sketch reprmsents one layer of a VLSI circuit, Including both nd
objects and the topology of the interconnecting wire. The algorithms In tids
paper process only one sketch at a time, without loss of generait. Com.
paction of a circuit with multiple layers can be accomplished by computinig
the constraints for each layer independently, and merging the cousbaint eye
tems. This section defines precisely what I mean by a sketch, and states the
theorem from 16] that determines routability conditios for a sketch. For
simplicity, the model we will use is more restricted than necesmry. Section 7
notes that some of the restrictions can be relaxed.

2.1. Definition o a sketch

A sketch is an ordered pair (F, W) consisting of finite set F of lee-
lure#, which are points and straight line segments, and a finite set W of
sre, which are simple paths in the plane. Figure I shows an atample of a
sketch. Module are represented as collectioms of features, because for tech.
nical reasons, terminals must be separated from other features. The features
and wirm of a sketch must satisfy the following restrictions:

(1) Distinct componns of the sketch (features and wires) may intersect
only at their endpoints.

(2) Distinct wire may not intersect, and no wire may css itself.
(3) Each wire toches exactly two features, which wre ingle points Visa

at the endpoints at the wire. They awe called the termi als of the wire.
(Multiterminal wires can also be handled; we Section 7.)

(4) Four of the features of the sketch form a beoadmwi &og around the other
components.

When referring to 'points in the sketch," we will man points lying on fe-
ture in the sketch. The connected groups of features re called the .bstsele,
of the sketch. The definitions imply that each terminal is its own obstacle.
Feature represent the fed parts of the layout, the modules; wire represent
the flexible interconnections. Clearly, a sketch whose wires are well-behaved
(e.g., consist of line segments) can emly be encoded in a dat structure.

2.2. Legality and routAlyi -

I now define what it mea to route a sketch, and when a sketch
represents a legal layout. A curve in sketch S = (F,W) is a path in the
plane that begins and ends on features in F, and intersects no faturs in
between. (For example, the wire in W re curves in S.) Two curves in S
are homotopic if there is a continuous deformation of the plane that maps
one into the other while holding the features F fixed. A routi of S is .a

- , -
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11gm I. A typial "kech. Solid points and Hase segments we fern.
tures, way Sam awe wires, and dotted haw awe conceptual module
boundare.

sketch (F, W') whose features are the same, and whose wites can be obtained
from the wire W by a continuous deformation of the plane that holds the

.4feature F fixed. (Thus the wire in W' are homotopic to the corresponding I
wires in W.-) A sketch is said to be legal if it represents a legal VLSI layout,
which for our purposes means that the following conditions hold:

(1) All obstacles and wires be. in the rectilinear grid a( unit spacing.
(2) The wvre form vertex-disjoint paths in the grid.

A sketch is routeble if it ha a legal routing. Using the algorithm
in [6), a legal routing of a routable sketch can be found in polynomial time.
Figures 1 and 2 illustrate the concepts of legality and routability. The sketch
in Figure 1 is illegal, because it contains curved wires. Nevertheless, it is
moutable, and one of its egal routings is shown in Figure 2.

2.3. RvA"~Idt conditione
The compaction algorithm is based on a theorem from 161 that char-

acterises the routable sketches in term of the following concepts. F p
(x,,i,) and a, y, are points in the sketch S, then M denotes the
open-ended line segment from p to q. Such a segment is called a eve I it
intersects no features in S. The ceaeic*p of a cut Iq in the maximum number
at wires that cab legally cros IN, in symbols,

The flow across pl. denoted fli(pf), is the number of croesings dof that
are enforced by the topology of the sketch. (See Figure 3.) Crossings of

7~
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th cat be removed by deforming the wres W do not contribute to the fow.

more foigly, at(l ) the ini-um, ois at oumti (F, W') o (F, W), p d" th e umberof'timesas 0crosed bywirem inW'.
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I...., .

V'lgme 3. Apo taoeofsketch ruthae ut l. Thle iowscrou J"iJ,...5

The routability of a sketch u completely determined by the flows and

Lemma 1. [OJ A sketch that ctains an unsafe cut b u- ,
routale. *..''

More ugiSlcantly, the convese a true (except when the feature of the , ,

sketch we iilesauy placed): a sketch that contain no unsae cuts i routabe.

... .
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In fact, this statement may be strengthened. A critical cut P some such
that p is the endpoint of a feature, and I is the closest point on its feature
to p. The critical cuts are the only important ones.

Theorem 2. (6] The sketch (F, W) is routable if and amly if

(F, O) is egal and every critical cut in (F, W) in safe.I The inequalities flow (M) _< cap(p) for the cuts 1W ofa sketch are called the
routability condition. for the sketch. Constraints of this sort will be used
by the compaction algorithm to determine the optimal positions for layout
features.

3. Computing flow In the sketch
This section describes a procedure used to facilitate the computation of
routability conditions for a sketch. As suggested by Theorem 2, the impor-
tant attributes of a sketch are the fows and capacities of cuts. Capacities
are purely geometric quantities, and can be computed in constant time. In
addition, they vary in a regular w-y with the movement of features during
compaction. Flows, on the other hand, are topological quantities, and are
relatively difficult to compute. Moreover, they depend in complex ways oan
the positions d features. Thus to compute ows, we require a data struc-
ture that captures the topology ol the sketch, and that is invariant under
compaction. I begin by presenting such a structure.

3.1. The adjacenc graph

The data structure we need is called the &d*sceneg graph of the sketch.
Its construction is straightforward, and is illustrated by Figure 4. From a
point an the leftmost edge of each obstacle, except the bounding ba, a line
is drawn leftward until it hits anothe obstade. These line segments and
rays will be called hurdles. Now each wire is replaced by a homotopc wire
that intersects as few hurdles as possible, making sure that no two wires
cross. (Wherever a group of winr croes a hurdle and croses beck, they
are moved to the other side of the hurdle.) The resulting set of objects frms
a planar graph, whose vertices ae obstacles and hurdle/wire crossings, and
whose edges are pieces of wires and hurdles. The dual of this graph is the
adjacency graph ol the sketch. A node of the adjacency graph corresponds
to a face of the original graph, and is said to border on the points forming
the boundary of that face. The adjacency graph does not change during
horisontal compaction, because hurdles can only slide back and forth, and
we will not allow wir s o features to cross e one another.

The purpose of the hurdles is to relate curves in the sketch to the
sketch topology. Consider the sequence of hurdles crossed by a cume, i
order, together with the directions of crossing. Such a hurdle seuene can

,9-o
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0 .. 0 0

0 0 0

Figure 4. The adjacency graph of the sch in Figure 1. Dashed ls
we hurdles, and circles we nodes of the adjacency graph. Adjacency
graph edges wre not depicted.

be put into a canonical form by removing all unnecessary crossings, that is,
all places where the curve crosses a hurdle and immediately crown back in
the other direction. One can show that two curves with the same endpoints
have the same canonical hurdle sequence if and only if they are bomotopic.

3.2. Computation off.ow k
An appropriate e arch through the adjacency graph can compute the

flow across a cut. To see how, notice that there are two kinds of edges in the
adjacency graph: "wire edges," which represent adjacency across a wire, and
"hurdle edges," which represent adjacency across a hurdle. A path through
the adjacency gaph thus has a hurdle sequence, determined by the hurdle
edges it contains. The foUowing lemma demonstrates the correspondence
between the two kinds of hurdle sequences. By the lenth of a path in the
adjacency graph we mean the number of wire edges the path contains.

Lemma S. Suppose thata cut jof sketch S ha hurdle w-
quence H. Let Poa. (j) be the set of paths in the adjacncy _I
graph of S, which begin at a node bordering m p, end at a node
bordering on q, and have hurdle sequence H. Then loH(IN) is
equal to the length of the shortest path in Patb(M).-

To make use of this lemma, we must be able to fnd shortest paths
with given hurdle sequences in the adjacency graph. It turns out that the
following " reedy" technique suffices. We may assume that each hurdle is to
be crowed from bottom to top. Call the adjacency graph G, and define G'
to be G with its hurdle edges removed.

.:.,-..° 5
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Algorithm F. (Computes the flow across a cut.)
Input: a cut P with hurdle sequence (h,...,,), the adjacecy aph G.
Local variables: integers i and t, nodes u and 9.
Output: the fBow f across 1q.

1. f - min(DIST-FROM(w) : w borders am p);
2. function DIST-FROM(w);
3. t .- 0; u- w;
4. for i - I to a do

. V node bordering hi from below that i closest to u in G';

6. t .- t + distance from u to v in G';
7. u ,- node adjacent to v across hurdle th;

end;
S. Y - node borderinm 9 ombelow that lsosest to u in G';
9. return t + distance from u to v in G';

In other words: for each node bordering on p, find the shortest path to the
firt hurdle, cross the fint hurdle, find the shortest path from there to the
second hurdle, and so on. Breadth-first search can be used to implement
lines 6-7 and 8-9. This approach may work well in plactice, but Its wst-
case behavior is poor. I show in Section 5 how to implement Algorithm F
more efficiently.

4. The compaction algorithm

This section defines mathematically the problem of compaction with auto-
matk jog introduction, and presents a practical algorithm that solves this
problem. I assume that each layer of the circuit to be compacted is available
in the form of a sketch. In fact, the compaction algorithm will deal with one
sketch alone, for the acistence of multiple layers adds nothing fundamental
to the compaction problem.

4.1. cofuration sp.ce

Let the input sketch be denoted by S. For the purpose of compaction,
the obstacles of S should be grouped into modules: collections of features
whose relative positions re fixed. The compactor is allowed to choose a
horizontal displacement for each module. Such a vector of displacements is
called a configuration of S. The configuration d = (d1,...,d.) corresponds
to a sketch in which module i has been shifted right by a distance d, (or
left by a distance -d). If the sketch has a modules, then the set of all its
configurations is the vector space R", and the origin 0 of this confWiur-
tion space corresponds to the original sketch. The sketch associated with
the configuration d will be denoted $(d), and is uniquely defined (up to

44.-.'..."-



270 Compaction with Automatic Jog N troducton

wire homotopy) by requiring that its wires have the mime canonical hurdle
sequences they had in the original sketch S(O).

Using configurations, we can describe how the sketch changes during
compaction. lIp is a point in S, its z and y coordinates will be denoted x.
and I., respectively. The module in which p lies will be written p(p), so the
horizontal position of p in the sketch S(d) is av + di,(). The notation p(d)
stands for p shifted by d, that is, the point (ap + d,(p), lp). In general, the
application of an object to a configuration d denotes the instantiation of that
object in the skench 8(d). Finally, let AM(d) be difference in a-coordinates
between q(d) and p(d); that is,

A,,(d) = (z + d,(q)) - (ap + di,(p)).

4.2. Problem statement

The compaction problem is to find a configuration d such that 8(d)
is routable. and can be routed in minimal width. As we have stated it, the
compaction problem is geuerally very difficult; in fact, it is NP-complete
[11]. The reason is that the routability conditions may not define a convex
region of configuration space, and hence the set of acceptable configurations
id E R" : S(d) is routable) is usually very hard to search. For example,
whenever two modules are adjacent, it may be possible to exchange them
while maintaining the topology of the sketch, and the resulting sketch may
be routable. But intermediate positions, where the modules intersect, are
not routable, so the set of acceptable configurations is not convex. Even if we
do not expect modules to exchange positions, loops of wire can interfere with
one another in the same way, as shown in Figure 5. In most optimization
problems, including compaction, one only expects to search a convex sub-
set of the acceptable configurations, in order to achieve a polynomial-time
algorithm. The algorithm presented here searches the largest such region
that contains the initial configuration, and thus finds the best configuration
available to any algorithm of its type.

4.3. Algorithm overvie

The basic notion underlying the compaction algorithm is that of a
potential cut. For the purposes of this section, a potential cut is a continuous
function that defines for each configuration d 6 R" a line segment between
two features in S(d). The line segment may or may not be a cut, depending
on the positions of the features in 5(d). The configuration c is said to
protect a potential cut 0 if either O(c) is not a cut, or O(c) is a safe cut.
The significance of these definitions lies in a reformulation of Theorem 2 in
terms of potential cuts. That theorem can be read as follows:

Let S = (F, W) be a sketch, and let c be a vector in its confifrs-
tion space. There exist certain critical potential cuts, depending

U+
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Li.
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Figure S. How wires can prevent modules from sliding paut ct
another. If the upper module is allowed to slide paut the lower one,
the set of acceptable conflgurations is not conve.:

onyon the features F, such that the sketch Slc) = (Flc), Wlcl)

is routable if and only if.
the ((),) legal, d

(2) the configuration c protects every critical potential cut

The compaction algorithm works by finding a subset of configration
space, determined by simple linear inequalities, whose configurations protect L
every critical potential cut. It thereby ensures that it chooses a configuration
that corresponds to a routable sketch. (Condition (1) above can be ignored,
because the wireles sketch (F(c),0) is legal unless its features fal to lie in
the gid. This cannot happen, because the initial sketch (F, W) is assumed
to be legal, and the compaction algorithm never considers nonintegral dis-
placements for modules.) The subspace searched is chosen so as to include -
the iitial configuration. An overview of the compaction technique follows.

The central problem is to find a simple linear inequality that ensures
that a potential cut, say 0, is protected. One would like to use the routabil-
ity condition cap(O(d)) flow(O(d)) as a constraint on the configuration d,
but for most potential cuts 0, this constraint is not a simple linear inequality. I
The difficulty lies not with the capacity of 0(d), which is determined solely
by the geometry of S(d), and depends in a simple way on the displacements
di. Rather, the quantity flow(O(d)) is hard to characterize, because it de-
pends on the relation of the line segment 0(d) to the topology of the sketch
8(d).

The solution is to find a specific configuration c such that whenever the L
potential cut 10(d) is unsafe, its Hlow is equal to flow(q)(c)). The constraint
cap((d)) > flouP(c)) is then sufficient to protect V. Moreover, when

I-o-



this constrant is written in terms of the variables di, it becomes a simple

linear inequality, because the rigt hand side is contant. To find c, the
aorithm looks for a conigurtio that minimize@ the capacity pe o , subject
to the conditio that fr c mit pat cuts of tmulr vertical sp o are safe.Tcem
shorter cuts force the other features to the side of b e which they must
i/e, ff' 0 is ova to become unsafe. If, in this way, the algorithm finds a
configuration c that doen not protect 0, the routability condition for 0(c)

is remembered. Otherwise, the potential cut s may be itored. r

4.4. Description of the compacfton areorsmfo

Since critical cuts move in nontrivia ways during compaction, it turns
out to be more convenient to consider the following types of potential cuts:

e Horizonta cuts from feature endpoints. te g th s
•Cuts between pairs of feature endpoints. .'

The constraints generated from these potential cuts turn out to be suffcient
to protect all the critica potentia cuts.

The horizonta potentif cuts hre particularly simple, because their
Bows are independent of the confi .ratio. These potentia cuts me treated
first in order to generate the constrants that prevent features from craning
ova one another. A horizontas potetia cut is a functio t of the form

T (d) = p(d)q (d), while p and we points in the origina sketch. Assuming
without lose of generat r that z c > np, Theorem 2 cives the routabilityconditio . '

Apg(d) ?: flow (#p(d)) + I .'"

Since flow(#,,(d)) =flow(q) for horizonta, the constraint is a simple,..'
edpinequity

- > w(M + 1) + (sp -z.

on the displacements of p and c. The figw across M is eaily computed
by Algorithm F of the previous section. The initia set of onstraints ipreced
computed from the horizonta cuts that wre incident o feature endpoints.""".
Of course, the constraints are maintained as a graph over the variables d..-

The constraint graph will be called 1.

The second stage of the agorithm concern the cuts that we not hot..-.:
izonta. Let # be the met of potentia cuts Op, where p and 9 ae feature .::
endpoints with Ifp # V' The height of an element 0., of # is the quantity :..
J p - yj I. This quantity is independent of configuratio. Sort # in increasing -'.
order of height, to form a sequence in which Blatter ptentia cuts precede ".,

taller one. After #v C- # has been processed, the algorithm can ensure that
the output configuration protects #p,.

?---
p-..



- - •F.M. MdY 273

The algorithm examines the elements of 0 in sorted order, and fori each one that proves important, it adds an appropriate constraint to the -

graph . The constraint for a potential cut 0. E 0, with z. z, is comn-
puted as follows. First, the algorithm solves the current constraint system I
together with the temporary constraint Ap,(d) 2! 0, fixing d,,(,), and mini-
miuing d.(,}. Call the resulting configtration c. If c protects #,, then the
constraint set is unchanged; otherwise, the constraint

d,.q ) - _2 (z, - x,) + flow(#M(c)) + 1

is added to 1. The new constraint is a simple linear inequality derived from
the routability condition cap(#M(c)) ? flow(#p(c)) + 1. -."

After all the potential cuts in %b have been processed, the constraint
system I is complete, and the algorithm solves it using a longest-path &Igo-
rithm. The resulting configuration is used to build an output sketch, which
is then routed using a single-layer router such as Algorithm R in [61. That
pa.rticular router has the advantage of being able to minimize the lengths of -
the wires in the routing.

The compaction algorithm is summarised below. We assume that the
left and right edges of the sketch's bounding box compose modules I and n,
respectively, and that the top and bottom edges of the box are ignored.

Algorithm C. (Compacts a sketch in the c-direction.)
Input: a sketch S = (F,W).
Local variables: the points p and q, a configuration c, and the constraint

graph I over variables di (1 _< i < n).
Output: the compacted sketch.
Subroutines: Algorithm F is used to compute flows in lines 2 and 5; Djk.

stra's algorithm is used in lines 4 and 7; Algorithm R (a single-layer
router from [6]) is used in line S.

1. Preprocess as described in Section 3;
2. Let I be the set of constraints {&A (d) > flow(M) + 1) where ] is a

horiontal cut with zp < . ad either p or q is an endpoint ofa a.
feature in F.

3. foreach pair of feature endpoints 1p, q) with z. _5 z and y. t, in
order of increasing height do

begin
4. Find a configuration c that minimsea CeA() - ,,() while obeying

the constraints I U {A,,(d) 2! 0);
A. If p(c)q(c) is acut in s(c) then If fl•w(#,(c)) > cep(#,,(c))
6. then add the constraint A.V(d) >_ jlow(o.(c)) + 1 to I 1..

end; st
, 7. Find a cOnfigration c sa tisfying I that minm c, - cI;

C ..

...
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8. Route the sketch S(c) and output the result.

4.5. Details of the implementation

9 The computation in line 2 is easily performed using Algorithm F o the
previous section. The cuts themselves may be found by any straightforward

method, as the algorithm's run time will be dominated by other factors.

9 Line 3 requires that pairs of feature endpoints be enumerated in order

of vertical separation. Writing down the pairs and sorting them would waste

large amounts of space; the following approach is better. First sort the

feature endpoints by I-coordinate, and associate with each endpoint the nat

higher endpoint. Place these pairs in a priority queue, and keep the queue

sorted by difference in go-coordinates. At each iteration of the loop (lines 3-

6), withdraw the best element (p, q) from the priority queue, and process the

potential cut 4,q. Then find the next endpoint q' above q in lo-coordinate, if

one exists, and insert the pair {p,q') into the priority queue. This method

uses linear space, and no more time than other parts of Algorithm C.

* To solve the constraint system in line 4, it suffices to compute longest;

paths from the vertex l(p). Dsjkstra's algorithm can be used for the purpose, 1Z1
because every edge in the graph has weight sero or les. (Normally, Dijkstra'.

algorithm is used to find shortest paths, and then the edge weights must be

nonnegative.) To see why edge weights are nonpositive, consider the case

when all the displacements d, are sero. Using the assumption that the initial

configuration is legal, one can prove that it obeys all constraints. Hence if (;
dy - di ? a. is a constraint in 1, then it holds under the assigment d 0 . C 7
The result is that 0 - 0 _> ad,, that is, a1j is nonpositive'.

a Once the algorithm finds the key configuration c in line 4, line 5 must

determine whether 0M(c) is a cut, and if so, what value flow(#M(c)) takes *

on. The former possibility may be checked by looking for a feature that

intersects o,,(c). To compute flow(4M(c)), Algorithm F is invoked. It

requires as input the hurdle sequence of 4M(c), which can be found by

checking every hurdle that lies between y. and yq in altitude. Include only

I This aimple observation has importapt implications for the problem of com-

paction, with or without jog introduction. FMetially, it say that wheever one's

input layout satisfies all the compaction constraints, one ca ensure that all the
edge weights in the constraint graph have the same sip, just by choosing the

proper coordinate system. The compaction variable must represent .ofet, from
the initial module positions, or equivalently, the reference point of each usodule

must be placed an the VIsais. Then Dijkstra's algorithm may be usd to salve

the constraint system, giving asymptotic performance on a graph G - (VS 5) of
O(JJ + IVIlog}VI) 131, s opposed to 0(IVIIJI) for the general BellmasaFrd al-
gorithm. See 1131 for a discumion of this ide .

77 -
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those hurdles, that craft p(c~q () in S (c). (A hurdle ra-tranfonns to f, c -# (cl
in S(c), just like any other cut.) The hurdle sequence should, of course,
be sorted by "cordinate, and all crossinp must be from bottom to top.
Presorting all the hurdles by i-coordinate eliminates the need to sort each
individual hurdle seqene.

e In line 7, Dijkstra's algorithm should be used once again, this time
computing longest paths in I from module 1, which is the left edge of the
bounding box of the sketch. If desired, the designer or design system may
add other simple linear inequalities to I, provided that they are all sat ised
by the initial layout S(0).

. The configuration c found in line 7 specifes the optimal compacted
sketch, but that sketch must still be constructed at line S. For the purpose

of applying Algorithm R, the single-layer wire-router of [6], it is not necessary
to construct a complete sketch S(c), but only to produce something called
the rubber-band equivalent (R.B.E.) of S(c). The features of the R.B.E. are
the me as those of S(), and can be located easly. The wires o the R.B."
can be found as follows. The set of points not lying an features or hurdles of
S(c) i a simply connected region, and its boundary is polygonal (if we allow
vertices at infinity). Hence it can be triangulated quickly, and the resulting
set of triangles forms a tree under the obvious adjacency relation. We can
therefore find for each wire tv in S(c) the shortest sequence of triaagles that
a routing of wu could pas through, and apply Algorithm W from 06] to find
the wire in the R.B.E. corresponding to w.

4.6. Comp/-lsity snalysis
We evaluate the time performance of Algorithm C in three parts. The

notation IDI is used to mean the size of the data structure D. In the wort
case, the most time-consuming portions of the algorithm are the G(IF I) calls
to Dijkstra's algorithm in line 4. Each call takes time O(IEI + IV ie IV1) a n
a graph (V,E) 131. Since IE1 is OIll), and IVI is , the number of modules,
this leads to an estimate of e(IFI (1i + n log a)) time. Another contnbutor
to the running time is the call to Algorithm F in line 5. If Algorithm Fis
implemented as suggested in the following section, then each of its O(IFI') in-
vocations requires O(IFI log IFI log 101) time, where G s the adjacency graph
of the sketch. So this portion of the algorithm takes O(IFI' log IFIolog 101)
time. Finally, carefu analysis shows that the construction and routing of
the output sketch requires only O(IFIIGI log 1G]) time [0]. Other operations,
including preprocessing the sketch, require considerably lens time under the
reasonable assumption that IWI, the number of wire segments in the input,
is O(IFI').

Which of the three major parts of Algorithm C will dominate in prac-
tice is not clear. In the wont case, IGI can be as high as Q(IFIIWI), if each of

• . ; .
/.
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5 ~~~~O(jWW i W VIr e set iterect alarefration 0 the hurdles, and the eross-
zas are not redundant. In most situations, however, 101 should be claw to
IFl. Making reasonable, estimates about the average ran time of Algorithm FP
and the density of the constraint graph 1, one can predict that actual per-
formance for the entire operation will probael approach G(IFPI'+') for some
sonmalue of C.ISpace usag is asier to evaluate: the main contribuators are the graphs
G and 1, along with Algorithm R, which may wse O(IFIIGI) spane in the
worst case. Thu the wonst came bound a O(IFI'JWI1), hut none of the dat
structures of Algorithm C or Algorithm R is likely to appoach its mudaum
s. The actual Igur will depend on the number of crossings between wire

and certain cuts in the sketch (c.g., hurdles), and will probably be O(IF'+e)
for some constant a e (0, 1).

S. Improvements and optinalsations

The compaction algorithm has, been stated in Its simplest form, and there
is considerable room to improve the performance 01 many 01 its steps. This
section collects several suggestions for speeding up the algorithm. The nst
important 01 these ideas is to add a preprocessing phase to Algorithm C that
allows Bows acros cuts to be computed quickly.

5.. eeer computts. of flow -
Recall that the compaction algorithm computes lows using Algorithm FP

from Section 3. The most time-consuming steps 01 that algoithm invlve
searching through asubpraph G'of the adjacdncy gaph ofthe inpuat aetch.
Algorithm F can be implemented efficiently by taking advantage 01 the fa
that the graph G'isa tree. The first taskis to preprocess G'so thate
can quickly determine the distance between any pair 01 its nodes, and hence
speed up lines 7 and 9 in Algorithm F. The second task is to pesprocma 0'
so that one can compute efficiently the closest node in a connected eabst
of G'to agiven node. This ability insufficinttolimplement lines 6ad S
01 Algorithm F, because the set 01 nodes bordering a hurdle or feature from
below is connected in 0'. We wish to inimalise the amount 01 spain used
by our data structures; in particular, we cannot stor expliitly the distane I..r
between every pair 01 node.

The solution is to decoUIms recursively the graph 0', and store, with a
node only the distance to each of its ancestors in the decomposition. igur 6
shown the construction. Let n be the number 01 nodes in the graph G'. The
separtor theorem for trees 1121 implies that G' contains a vmte whos
removal disconnects G' into subtises containing at most fit sodae each.
Moreover, the vertex r can be found, in inear time using depth-list sach
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Figur . A tree, dama with solid Sms, ad fts decompositiom tree.

to compute the emas of ubtrem. If we stoge with every ode its distance
from r, then the distance between two sods in diflerent su e of r can
be computed by summing their distaces from r. Now we decompose the
subtre. d recursively, forming a dewnysitim tree D an the no" d 10.
At each stee of the decomposition, the sies of subtrees re reduced by a
constant factor, so D has logarithmic height. To find the distance between
two vertices in 0', one first finds their lowest common ancestor (LCA) in D,
and then sums their distances from that ancestor. This procedure clearly
akes at mot 0oI01) time.

13 Some cta preprocesing is needed boare we am compute closest
members of connected sets of G. Let D be the sme decomposition tree a
above. The LCA in D connected set C C G' is menber of , and we
can compute in advance the WA's of the connected sets that we cue about.
We also store, for each node and for each of its ancestor x, the highest
vertex in D that is interior to the to the path between a and Vin 6". In
cas and p we adjacent in G', we aoe al instead.

I now describe bow to compute the closest veten in a connected set
CrG'toanode u. Iflisin C,thentheansweris f. Otherwlse, at

to be the LCA d C. if is not an ncestor d , then replace s by the
CA of and Y. Now perform a bwina search" on the path between % and
asfollows. Let s be thehghest vertin D between u and 9. V sais *.

then the answer is 9; otherwise et o Sa - a according to whether a
don, or does not lie in C, and repet; the yprocme. Mter at mt O(9S IGI)
iterations, the search will terminate, and each iteration can be made to m
in O"o ICI) tim..

5.2. Compressing One sdaemaep graph

Both the time and spac performance a( Algorithm C can be improved

•.%
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by reducing the du of the adjacemcy p.9k. The trick is to 6mm ber".
in inch a wsy a to .inI.Ii. the number of asesing hetwm wire and
huidI... Although we deined hweid so that @muy ebstace be a* es
hordle incideat =n its lof, this property is unimportanst. The hurdles b e
chemtobe uW ut of ba oulcus =that the ut d polob b"d
bouaing bt so bng caa hwileea a tw% is m P- -- -I
Eqllaly, N obstacles and hurdle m uonuidered as the mmd. and efgee,

rsetIvely, o a 09k, thim this graph munst he a tree.

We cm use a mfluum-cost spsnnlng tree algorithm tobId aisetof
hurdles that am as few wire a possible. Evesy horisonta cut bhI etwo
different obstacles is a potenitial hurdle, hut we may restrict, ou atteatlm
to horizonatal cuts that are incident =m feature emipuints. There we at moost
O(IFI) such cuts, adthey can bethounght of a the edges of a eaoB Novr
the obstacles. The cost ofan edg will he the number df crossip of the
cut by wire in the original sketch; costs can be computed euleatly =in
& K&Mning algortm uin 6]. Theburdlscheeetoe the edgina
inimmum-cost spaning tree of the pah NF.

5.3. Igsffing usimplteat pokmen noA

A few simple checks will probably Wpeed up Algorithm C by a factor
of 4oamore. First dfall, acorary of the corectnese prod inthat apo.
tential cut #* whose capacity is mi in the initial conaguralom cannot
generate a omstuint. Therefore, the algorithm need omly check peteastlal Z
cuts #pMfor whch Iz.- s I, - VI. Seond,thebwer mdpolm ofafr
feature need not be codered in coWuncim with festure endpoints abare o
it, and symmetrially inr the upper endpoint. Similarlyi a potential cutit
which in the initial conflgratiom travels rightward from the Mof wadpolt
of a horisontal feature need nwt be considered, and symmetrically hor right

enpit.Finally, a potential cut *pqwith xq >a nesied not be ceced If
in all configuratioss d such that Apg(d) > 0, the line segment *n(d) is not
a cut. This is kon to be true, fee ample, If emey rlghtward cut from p
aCesesd a feature in the sme module am p.

a~~ S. Iigts of the correctneeen proof

The corectnss proof d Algorithm C cannot be included here due to space
restrictions, fee It is highl involved. It does, howeve, lead to an undr-
standing of the ssuaptom that underle the comnpaction algorithm. In ti
section I stame a set of cosiditimss under which me can construct a corn-
pactin algorithm that perform automatic Jog introduction in the manner
of Algorithm C. Knowing these conditioms, one can determine whether Al. a

gorthm C will contnu to work M the debiitiom o legal sketch is amd.



- p:.--.:::

We require a more tecaical deite of potential cut. Let P end
Qbeheturein the gnal ketch $, d lc t# be a cntnu ctIon
that daes, for each coniguration d, a Ine omnt betwen the fatuwe
P(d) and Q(d) in the ketch 5(d). The function 0 is a pountial cut 9 the
positi. of 0(d) relAve to P(d) end Q(d) depmda ml an the displmem t
between P(d) and Q(d), aam A,(d) - dp(Q) - d.(p) (sftetching the
notation dihtly). Is othet wos # must satisfy the folowing condition. *-.

If d and d' we my two comfiguratlio ms soch that Ap 0 (d) -
Ap(d'), than (d') is equal to 0(d) abfted to the ht
4f.(P) - Idp) lnite.

Algorithm C compacts a sketch S by computing a sequence t(5)
of potential cuts of S, and usng their mutability cmndi to

constrain the positiokn of modulo in S. The proof that this technique gen-
erates a suffcient and optimal constraint system depends on seVera facts.
One such fact i Lemma 1, which ensures that an unsfe cut makes a sketch
uwroutable. Another important fats Is that the potential cuts f(S) dew-
mine the mutability of the modified sketc 8(d). Specically, they have
the following proper -

Rout" y property. If S(O) is rot"b, and for all A 6 10,1] the.
cosifguratiom Ad protects @mey~ 0 f(8), then 5(d) is notable. 4,.

The capacities a( the potential cuts also have a special property:

• . rtee preperip. For each 0 e f($), and each Maie in co-
figuration sce, there i a point C of L at which the capacity
mp(#(c)) inbimal, and eap(#(d)) is noadacremaing as dmoe
away frm c aloms L.

In principle, our compaction method depends on only me frthr fact.

O vdevi property. Suppose that the folowing statemeat bld.
(1) The configuration d protects # for all i < b.
(2) The configuration d ies an the boundary of the set (c e

R- : #(c) is a cut)..-"
(3) The cuts i properly contained in the lin segment #&(d).

Then s is safe in the sketch S(d).

Algorithm C satisfis this requirement by sorting Its potential cuts according
to height.

The conditions lited above allow sto determine when Algorithm C
can be artended to more general kinda of layouts. Suppose that under new
definitions of sketch' and 4egl,' Lemma I continues to hold, and that
gwen a legal sketch S, me can compute In polynoma time a sequence
t (S) of potential cuts with the routability, bitonic, and ordering properties.

4-;.... . .
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Suppose alo that ane has a singk-lsaer router that can in is the vires d
after compaction. Then the technique of Algonithm C gives a polyoinhl
time alorithm to compact the sketch S.

7. Extensions and discusslom

This section suggests several mw in which the compaction algorithm can
be wtended, and concludes with an overview of the main reults.

7.1. Gtnralhsaiors of Alporitm C

7.1-1. Multiple layers. We hsave assumed that the layout to be compacted ,.-
compises only one layer. To remove this restriction, Algorith C need "--
only generte constrants for each lae of the desig independentl, a in t
lines 1-6. Since mast moduleo have components on more than one layer, the .
resulting constraint systems, must be merged, by choosing the most restric-"-''

tive constraint between every pair of modules. The merged system is then
solved normally.

7.1.2. Wire width. None of my results depend on the asumption that
all wires have the same width. If they do not, one need only replace the
counting of wires by the summation of their widths, in the definition of flow,
in Lemma 3, and in Algorithm F. With suitable modifications, features can
have differing thicknemes as well. More details are included in 114J. ," -"

7.1.3. Multiterminal nets. One nmor deiciency of the sketch as a layout
model its limitation on the number of terminals that may contact a wire. The
model can be generalized, however, and the compaction algorithm remains
essentially unchanged. (One difference is that Algorithm R, the single-layer
router, can no longer minimize the wire lengths in the output sketch.) See [61
for a discussion of how to handle multiterminal wires.

7.2. Summery and conclwion

The main theoretical contribution of this paper is a polynomial-time
algorithm that compacts IC (or PCB) layouts while introducing jogs into
wires in an optimal fashion. The power of Algorithm C comes from the
elimination of wires a hard objects in the layout, and their replacement
by constraints between modules. The use of routability conditions to solve
placement problems is not new [7,15,16], but until now, only channel m ting
problems had been considered. The reason is that the mutability of general
planar layouts was not adequately understood until very recently [1,61. To
characterize planar mutability requires a robust model of a circuit layer,
such as the sketch, and a fair amount of theory. In addition, some care is
needed to apply routability conditions to the compaction of general sketches;
proving the correctnes of Algorithm C is nontrivial.

S- .
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On the practical side, my compaction method can be expected to pro-
duct high-quality Wout with little signer intervention, saving both in
chip area and deein time. Its primary drawback lies in its me of com-
putational resources. Although there we good reasons to believe that its
wit-ce performance bounds will not be approached in practice, reource
limitations may prevent it from being used to compact large layouts all at
J ce. Algorithm C is amenable to we at all levels of the design, however, so ,

that hierarchical compaction can alleviate much of the resource problem. It
also may be suited to use in channel routing, where the number of compo-
nents is not too great. The idea, which was implemented at Bell Labs (see
Acknowledgements) is as fallows: the channel is artificially inflated, so that
an an ordinary channel routing algorithm, which may have difficulty with
crowded channels, may succeed; then a compactor like Algorithm C, with
the ability to insert arbitrarily complex jogs, is applied in aider to compact
the chamel back to the proper mse.

One important question left open by my research is whether the com-
paction method embodied in Algorithm C is more efficient in practice than
the straightforward algorithm, namely, inserting jog points into each wire
where it crosses each horizontal gridline, and solving the resulting constraint
system normally. This technique is evidently simpler than that of Algo-
rithm C, and may be more efficient in practice. On the other hand, it may
be possible to extend Algorithm C to situations where wires and modules
may contain diagonal segments, and grid-baed algorithms break down.
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